Hello,
Thank you for your help.
First, concerning the substraction of two equations, I found on the net on more simple way (to my point of view) :
`Inner[Subtract, eq\[Psi]Ae, eq\[Psi]E, Equal];`
Secondly, I have still a little concerning the linearization that I have noticed when I have employed my method on a more complex example (see in the file attached).
I find this for the equation of psi
$$ \Delta \psi '(t) \left(\Delta \theta (t) \Delta \theta '(t) \left(-2 A \sin (\text{$\theta $e}) \cos '(\text{$\theta $e})-2 A \cos (\text{$\theta $e}) \sin '(\text{$\theta $e})+2 C \sin (\text{$\theta $e}) \cos '(\text{$\theta $e})+2 C \cos (\text{$\theta $e}) \sin '(\text{$\theta $e})\right)+\Delta \theta '(t) (2 C \sin (\text{$\theta $e}) \cos (\text{$\theta $e})-2 A \sin (\text{$\theta $e}) \cos (\text{$\theta $e}))\right)+\Delta \psi ''(t) \left(\Delta \theta (t) \left(2 A \cos (\text{$\theta $e}) \cos '(\text{$\theta $e})-2 C \cos (\text{$\theta $e}) \cos '(\text{$\theta $e})\right)+A \cos (\text{$\theta $e})^2-C \cos (\text{$\theta $e})^2+C\right)+C \Omega \Delta \theta (t) \cos '(\text{$\theta $e}) \Delta \theta '(t)+C \Omega \cos (\text{$\theta $e}) \Delta \theta '(t)=\Delta \psi (t) \left(g L m_3 \cos (\text{$\theta $e}) \sin '(\text{$\psi $e})+g L m_3 \Delta \theta (t) \cos '(\text{$\theta $e}) \sin '(\text{$\psi $e})\right)+g L m_3 \Delta \theta (t) \sin (\text{$\psi $e}) \cos '(\text{$\theta $e})$$
and for the equation theta :
$$A \Delta \theta ''(t)+\Delta \psi '(t) \left(-C \Omega \cos (\text{$\theta $e})-C \Omega \Delta \theta (t) \cos '(\text{$\theta $e})\right)=\Delta \psi (t) \left(g L m_3 \sin (\text{$\theta $e}) \cos '(\text{$\psi $e})+g L m_3 \Delta \theta (t) \sin '(\text{$\theta $e}) \cos '(\text{$\psi $e})\right)+g L m_3 \Delta \theta (t) \cos (\text{$\psi $e}) \sin '(\text{$\theta $e})$$
Instead of
psi equation :
$$C \left( {\frac {\rm d}{{\rm d}t}}\epsilon2 \left( t \right) \right)
\Omega\,\cos \left( {\it theta\_e} \right) + \left( A \left( \cos
\left( {\it theta\_e} \right) \right) ^{2}-C \left( \cos \left( {
\it theta\_e} \right) \right) ^{2}+C \right) {\frac {{\rm d}^{2}}{
{\rm d}{t}^{2}}}\epsilon1 \left( t \right) =\epsilon1 \left( t
\right) Lgm_{{3}}\cos \left( {\it psi\_e} \right) \cos \left( {\it
theta\_e} \right) -\epsilon2 \left( t \right) Lgm_{{3}}\sin \left( {
\it psi\_e} \right) \sin \left( {\it theta\_e} \right)$$
for theta equation
$$-C \left( {\frac {\rm d}{{\rm d}t}}\epsilon1 \left( t \right)
\right) \Omega\,\cos \left( {\it theta\_e} \right) +A{\frac {{\rm d}^
{2}}{{\rm d}{t}^{2}}}\epsilon2 \left( t \right) =-\epsilon1 \left( t
\right) Lgm_{{3}}\sin \left( {\it psi\_e} \right) \sin \left( {\it
theta\_e} \right) +\epsilon2 \left( t \right) Lgm_{{3}}\cos \left( {
\it psi\_e} \right) \cos \left( {\it theta\_e} \right) $$
So, it seems that i have some terms with second orders which are still in my equations after linearization at the first order.
Do you have ideas how I can correct my linearization step ?
Thanks a lot of your help
P.S: Sorry if my post is not easy to read, I have still some difficulties to enter Mathematica inputs in my posts. I
'm interesting also how I can enter Mathematica inputs in a post.strong text
Attachments: