As some of you already figured out, something is awry with my use and interpretation of
Table[Limit[etaMM[x, 30 + n]/etaMM[x + n, 30 + n], x -> Infinity] -
N[(-3/Log[3])^n, 30], {n, 1, 10}]
{-1.37235287940800822169041524488*10^40,
2.79444910535423129879510807704*10^41, \
-7.63085157751707944108437643731*10^41,
2.08377013152699855184232233095*10^42, \
-4.24307018055104941251691654111*10^43,
1.15866267590045475709082282171*10^44, \
-3.16398065409903564894573215540*10^44,
6.44264535810872405469659678725*10^45, \
-1.75930455845876064949571024220*10^46, \
-1.31188157413621969593288955467*10^47}
because, to the contrary, I can enter and get the following.
In[13]:= Limit[etaMM[x, 30 + 2]/etaMM[x + 2, 30 + 2], x -> Infinity] -
N[(-3/Log[3])^2, 30]
Out[13]= 0.*10^-28
In[11]:= Limit[etaMM[x, 30]/etaMM[x + 3, 30], x -> Infinity] -
N[(-3/Log[3])^3, 30]
Out[11]= 0.*10^-26
In[16]:= Limit[etaMM[x, 30]/etaMM[x + 4, 30], x -> Infinity] -
N[(-3/Log[3])^4, 30]
Out[16]= 0.*10^-25
It looks like I've got n doing double work; it's global in etaMM and the table both.
This works, though:
In[58]:= Table[
Limit[etaMM[x, 30 + u]/etaMM[x + u, 30 + u], x -> Infinity] -
N[(-3/Log[3])^u, 30], {u, 1, 10}]
Out[58]= {0.*10^-26, 0.*10^-28, 0.*10^-29, 0.*10^-29, 0.*10^-28,
0.*10^-28, 0.*10^-27, 0.*10^-27, 0.*10^-27, 0.*10^-26}