Hi, guys I have a problem here on how should I add a condition for variable "A" as shown in the image highlighted in red under equation 4 (eq4). The condition I would like to set is that "A" equals "(b/m)p'[t] + (k/m)(p[t]-0.5) when "(p[t] >= l/2)" and "A" equals to zero when "(p[t] < l/2)" .
I've inserted the program file below and hopefully you all can paste it in your nb file and try to check it for me. I truly appreciate your help here a lot.
Thanks again
Best regards, Aaron Aw`
{\[Mu], m, b, k, l, r0, g0} = {3.9877848*10^14, 1, 0.054, 0.0001, 5,
7178000, 9.81};
r = Sqrt[(u[t]^2 + (v[t] + r0)^2)];
n = Sqrt[(\[Mu]/r^3)]
n2 = Sqrt[(\[Mu]/r0^3)]
g = (\[Mu]/r^2);
\[Xi] = 2 p[t]/r;
T = (2 \[Pi])/n;
fu = -g (u[t]/r) +
g \[Xi]^2 (3/8 (5 Sin[\[Phi][t]]^2 - 2) (u[t]/r) +
3/4 Sin[\[Phi][
t]] (((v[t] + r0)/r) Cos[\[Phi][t]] - (u[t]/
r) Sin[\[Phi][t]]));
fv = -g ((v[t] + r0)/r) +
g \[Xi]^2 (3/8 (5 Sin[\[Phi][t]]^2 - 2) ((v[t] + r0)/r) +
3/4 Sin[\[Phi][
t]] ((u[t]/r) Cos[\[Phi][t]] + ((v[t] + r0)/
r) Sin[\[Phi][t]]));
BB = -(u[t]/r^2) Derivative[1][v][t] -
n2 (u[t]/r) + (Derivative[1][u][t] + n2 ( v[t] + r0)) ((v[t] + r0)/
r^2); (*thetadot*)
CC = ((v[t] + r0)/r^2) Derivative[1][v][t] -
n2 u[t] + (Derivative[1][u][t] + n2 ( v[t] + r0)) (u[t]/r); (*rdot*)
DD = -(u[t]/r^2) fv + ((v[t] + r0)/r^2) fu - (2 BB CC)/r;
A[t] = b/m Derivative[1][p][t] + k/m (p[t] - l/2);
eq1 = (u^\[Prime]\[Prime])[t] + 2 n2 Derivative[1][v][t] - n2^2 u[t] -
fu;
eq2 = (v^\[Prime]\[Prime])[t] - 2 n2 Derivative[1][u][t] -
n2^2 v[t] - fv - g0;
eq3 = (\[Phi]^\[Prime]\[Prime])[t] + 3 n^2 Sin[ 2 \[Phi][t]]/2 +
DD + ((2 Derivative[1][p][t])/p[t]) (BB + Derivative[1][\[Phi]][t]);
eq4 = (p^\[Prime]\[Prime])[t] + A[t] -
p[t] (BB + Derivative[1][\[Phi]][t])^2 -
g \[Xi] (3 Cos[\[Phi][t]]^2 - 1)/2 +
g \[Xi]^3 (15 Cos[\[Phi][t]]^2 - 3)/16;
system1 =
NDSolve[{eq1 == 0, eq2 == 0, eq3 == 0, eq4 == 0,
u[0] == 0.05*Sin[1.3963], u'[0] == 0, v[0] == 0.05*Cos[1.3963],
Derivative[1][v][0] == 0, p[0] == 0.05,
Derivative[1][p][0] == 0.001, \[Phi][0] == 1.3963,
Derivative[1][\[Phi]][0] == 0}, { u, v, p, \[Phi]}, {t, 0, T},
MaxSteps -> Infinity];
ParametricPlot[ Evaluate[{v[t], u[t]} /. system1], {t, 0, 80000},
ImageSize -> {400, 300}, PlotStyle -> {Blue},
LabelStyle -> Directive[12]]