This is great. I enjoy the fact the quite complex math equations are neatly pinpoint the effect. Math is great. If in your notebook I take equations from NDSolveValue
and denote them by, say, eq
, then this
eq // Column // TeXForm
will give me the nice MathML below. So Community is great too for simple parsing of LaTeX type of math right from Mathematica. Adding here you reference:
Analysis of Dynamics of the Tippe Top Nils Rutstam. Linköping Studies in Science and Technology.Dissertations, No .1500, Department of Mathematics Linköping University, SE --- 581 83, Linköping, Sweden Linköping 2013.
$$
\begin{array}{l}
\theta ''(t)=\frac{\sin (\theta (t)) \left(-\alpha R gn+i1 \cos (\theta (t)) \phi '(t)^2-i3 \omega 3(t) \phi
'(t)\right)}{i1}+\frac{\mu R gn Vx(t) (1-\alpha \cos (\theta (t)))}{i1} \
\phi ''(t)=\frac{\csc (\theta (t)) \left(\mu (-R) gn Vy(t) (\alpha -\cos (\theta (t)))+i3 \omega 3(t) \theta '(t)-2 i_1
\theta '(t) \cos (\theta (t)) \phi '(t)\right)}{i_1} \
\omega 3'(t)=-\frac{\mu R gn \sin (\theta (t)) Vy(t)}{i3} \
Vx'(t)=-\frac{\mu gn Vx(t) \left(m R^2 (1-\alpha \cos (\theta (t)))^2+i1\right)}{i_1 m}+\frac{R \sin (\theta (t))
\left(\alpha R gn (1-\alpha \cos (\theta (t)))-i1 \alpha \left(\theta '(t)^2+\sin ^2(\theta (t)) \phi '(t)^2\right)+\omega
3(t) \phi '(t) \left(i3 (1-\alpha \cos (\theta (t)))-i1\right)\right)}{i1}+V_y(t) \phi '(t) \
Vy'(t)=-\frac{\mu gn Vy(t) \left(i3 m R^2 (\alpha -\cos (\theta (t)))^2+i1 m R^2 \sin ^2(\theta (t))+i1 i3\right)}{i1 i_3
m}+\frac{R \omega 3(t) \theta '(t) \left(i3 (\alpha -\cos (\theta (t)))+i1 \cos (\theta (t))\right)}{i1}-V_x(t) \phi '(t) \
\psi '(t)=\omega _3(t) \
\theta (0)=0.1 \
\theta '(0)=0 \
\phi (0)=0 \
\phi '(0)=0 \
\omega _3(0)=160 \
V_x(0)=0 \
V_y(0)=0 \
\psi (0)=0 \
\end{array}
$$