Group Abstract Group Abstract

Message Boards Message Boards

0
|
6.2K Views
|
6 Replies
|
0 Total Likes
View groups...
Share
Share this post:
GROUPS:

Integrate gives wrong result

Posted 10 years ago
POSTED BY: tyran simon
6 Replies
POSTED BY: Hans Dolhaine
POSTED BY: Hans Dolhaine

If you first expand and simplify the argument of the square root, the integration works:

In[1]:= 
Simplify[Expand[(x + Cos[\[CurlyPhi]])^2 + (y + Sin[\[CurlyPhi]])^2]]

Out[1]= 1 + x^2 + y^2 + 2 x Cos[\[CurlyPhi]] + 2 y Sin[\[CurlyPhi]]

In[2]:= Integrate[
 Sqrt[1 + x^2 + y^2 + 2 x Cos[\[CurlyPhi]] + 
   2 y Sin[\[CurlyPhi]]], {\[CurlyPhi], 0, 2 \[Pi]}]

Out[2]= ConditionalExpression[
 4 Sqrt[1 + x^2 + y^2 - 2 Sqrt[x^2 + y^2]]
   EllipticE[-((4 Sqrt[x^2 + y^2])/(
    1 + x^2 + y^2 - 2 Sqrt[x^2 + y^2]))], 
 2 Sqrt[x^2 + y^2] < 1 + x^2 + y^2 && (1 + x^2 + y^2)/Sqrt[
   x^2 + y^2] >= 2]
POSTED BY: S M Blinder

The difference between F and G is of the order of .2 or less. It is too small to perceive it in the two plots you have made. Try plotting the difference:

With[{n = E, y = 0}, 
 Plot[NIntegrate[
    Sqrt[(x + Cos[\[CurlyPhi]])^2 + (y + 
         Sin[\[CurlyPhi]])^2], {\[CurlyPhi], 0, 2 \[Pi]}] - 
   Power[(2 \[Pi])^E + (2 \[Pi] Sqrt[x^2 + y^2])^E, (E)^-1], {x, 0, 
   2 Pi}]]
POSTED BY: Gianluca Gorni
Posted 10 years ago

On the Plot it fits:

x,y

r

POSTED BY: tyran simon

I tested your formula for F numerically, and it doesn't seem true:

With[{x = 1, 
   y = 2}, {Integrate[
    Sqrt[(x + Cos[\[CurlyPhi]])^2 + (y + 
         Sin[\[CurlyPhi]])^2], {\[CurlyPhi], 0, 2 \[Pi]}],
   Power[(2 \[Pi])^E + (2 \[Pi] Sqrt[x^2 + y^2])^E, (E)^-1]}] // N
With[{y = 2}, 
 Plot[NIntegrate[
    Sqrt[(x + Cos[\[CurlyPhi]])^2 + (y + 
         Sin[\[CurlyPhi]])^2], {\[CurlyPhi], 0, 2 \[Pi]}] -
   Power[(2 \[Pi])^E + (2 \[Pi] Sqrt[x^2 + y^2])^E, (E)^-1], {x, -20, 
   20}]]
POSTED BY: Gianluca Gorni
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard