I tested your formula for F numerically, and it doesn't seem true:
With[{x = 1,
y = 2}, {Integrate[
Sqrt[(x + Cos[\[CurlyPhi]])^2 + (y +
Sin[\[CurlyPhi]])^2], {\[CurlyPhi], 0, 2 \[Pi]}],
Power[(2 \[Pi])^E + (2 \[Pi] Sqrt[x^2 + y^2])^E, (E)^-1]}] // N
With[{y = 2},
Plot[NIntegrate[
Sqrt[(x + Cos[\[CurlyPhi]])^2 + (y +
Sin[\[CurlyPhi]])^2], {\[CurlyPhi], 0, 2 \[Pi]}] -
Power[(2 \[Pi])^E + (2 \[Pi] Sqrt[x^2 + y^2])^E, (E)^-1], {x, -20,
20}]]