Thank you Frank. I think you might be right.
I rephrase your simple case as follows:
In[84]:=
reg = ImplicitRegion[x^2 + y^2 + z^2 == 1, {x, y, z}]
Out[84]= ImplicitRegion[x^2 + y^2 + z^2 == 1, {x, y, z}]
In[85]:= NIntegrate[1, {x, y, z} \[Element] reg]
Out[85]= 12.5664
And it seems to work (
$4\pi$ is the answer). But if I do the same with my integral (for instance for
$a=0.5$):
reg = ImplicitRegion[Sqrt[1/3 ((x - y)^2/(x + y)^2 + (x - z)^2/(x + z)^2 + (y - z)^2/(y + z)^2)] == .5 && x >= 0 && y >= 0 && z >= 0, {x, y, z}]
and then
NIntegrate[Sqrt[
12 ((x - y)^2/(x + y)^2 + (x - z)^2/(x + z)^2 + (y - z)^2/(y +
z)^2)]/(E^(x + y + z)
Sqrt[(-((4 x (x - z))/(x + z)^3) - (4 y (y - z))/(y + z)^3)^2 + ((
4 z (y - z))/(y + z)^3 - (4 x (x - y))/(x + y)^3)^2 + ((
4 y (x - y))/(x + y)^3 + (4 z (x - z))/(x + z)^3)^2]), {x, y,
z} \[Element] reg]
Then I get the error: "DiscretizeRegion was unable to discretize the region \
ImplicitRegion[<<2>>]. "
Any further ideas?