Let's get some initial estimates for the parameters by exponentiating the vertical axis and doing a linear fit.
s = {{10.7000, 0.2973}, {10.7333, 1.6486}, {10.7833, 3.0039}, {10.8167, 3.5144}, {10.8500, 3.8395},
{10.9000, 4.1202}, {10.9333, 4.2455}, {10.9667, 4.4361}, {11.0167, 4.5758}, {11.0500, 4.6816},
{11.0833, 4.7129}, {11.1333, 4.8043}, {11.1667, 4.9506}, {11.2000, 5.0406}, {11.2500, 5.0837},
{11.2833, 5.2404}, {11.3167, 5.2456}, {11.3667, 5. {11.4000, 5.3436}, {11.4333, 5.4154},
{11.4833, 5.4245}, {11.5167, 5.4911}, {11.5500, 5.3488}};
exp = Map[{#[[1]], Exp[#[[2]]]} &, s];
line = Fit[exp, {1, t}, t]
Show[ListPlot[exp], Plot[line, {t, 10.7, 11.55}]]
which gives us -3100.3 + 290.013 t
and

Now, using those estimates for the parameters as starting values,
f[t_] := Log[b + c*t];
nlm = NonlinearModelFit[s, f[t], {{b, -3100}, {c, 290}}, t];
log = Normal[nlm]
Show[ListPlot[s], Plot[log, {t, 10.7, 11.55}]]
which gives us Log[-3031.56 + 283.439 t] without any error messages
and
