Another limit, the same difficulty...
In the following example I intentionally gives the result at the beginning because it's not difficult to solve the problem analytically.
So, I tried to verify In Mathematica the result of this example
The Mathematica gives
In[1]:= Limit[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(n\)]\(Abs[
\*SuperscriptBox[\(E\),
FractionBox[\(2. \[Pi]\ I\ k\), \(n\)]] -
\*SuperscriptBox[\(E\),
FractionBox[\(2 \[Pi]\ I\ \((k - 1)\)\), \(n\)]]]\)\),
n -> \[Infinity]]
Out[1]= Limit[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(n\)]\(Abs[
\*SuperscriptBox[\(E\),
FractionBox[\(\((0.` + 6.283185307179586`\ I)\)\ k\), \(n\)]] -
\*SuperscriptBox[\(E\),
FractionBox[\(2\ I\ \((\(-1\) + k)\)\ \[Pi]\), \(n\)]]]\)\),
n -> \[Infinity]]
It's interesting that when I tried to compute simply the numerical evaluations of the expression under the limit, I obtained
In[2]:= Table[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(n\)]\(Abs[
\*SuperscriptBox[\(E\),
FractionBox[\(2. \[Pi]\ I\ k\), \(n\)]] -
\*SuperscriptBox[\(E\),
FractionBox[\(2 \[Pi]\ I\ \((k - 1)\)\), \(n\)]]]\)\), {n, 10000,
10010}]
Out[2]= {6.28319, 6.28319, 6.28319, 6.28319, 6.28319, 6.28319, \
6.28319, 6.28319, 6.28319, 6.28319, 6.28319}
In[3]:= Table[\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(n\)]\(Abs[
\*SuperscriptBox[\(E\),
FractionBox[\(2. \[Pi]\ I\ k\), \(n\)]] -
\*SuperscriptBox[\(E\),
FractionBox[\(2 \[Pi]\ I\ \((k - 1)\)\), \(n\)]]]\)\), {n, 100000,
100010}]
Out[3]= {6.28319, 6.28319, 6.28319, 6.28319, 6.28319, 6.28319, \
6.28319, 6.28319, 6.28319, 6.28319, 6.28319}
These results are approximately equal to
$2\pi$. Why didn't work the function Limit[]?