Awesome! Thanks Vitaliy.
Here is some further refinements:
Manipulate[
pos[t_] := {1/
2 E^(-I t \[Omega]) (x0 + E^(2 I t \[Omega]) x0 + I y0 -
I E^(2 I t \[Omega]) y0 + I t x0 \[Omega] -
I E^(2 I t \[Omega]) t x0 \[Omega] - t y0 \[Omega] -
E^(2 I t \[Omega]) t y0 \[Omega] + t v0 Cos[\[Theta]0] +
E^(2 I t \[Omega]) t v0 Cos[\[Theta]0] + I t v0 Sin[\[Theta]0] -
I E^(2 I t \[Omega]) t v0 Sin[\[Theta]0]),
1/2 E^(-I t \[Omega]) (-I x0 + I E^(2 I t \[Omega]) x0 + y0 +
E^(2 I t \[Omega]) y0 + t x0 \[Omega] +
E^(2 I t \[Omega]) t x0 \[Omega] + I t y0 \[Omega] -
I E^(2 I t \[Omega]) t y0 \[Omega] - I t v0 Cos[\[Theta]0] +
I E^(2 I t \[Omega]) t v0 Cos[\[Theta]0] + t v0 Sin[\[Theta]0] +
E^(2 I t \[Omega]) t v0 Sin[\[Theta]0])};
cor2[tt_] := {ParametricPlot[pos[t], {t, 0, 60}, PlotPoints -> 30,
PlotStyle -> Directive[Thickness[.01], Orange]][[1]],
Disk[pos[tt], .4],
Arrow[{{0, -10}, {0, 10}}], Text[Style[y, Large], {1, 9}],
Arrow[{{-10, 0}, {10, 0}}], Text[Style[x, Large], {9, -1}]};
Graphics[{Rotate[cor2[t], \[Omega] t, {0, 0}], Dashed,
Line[{{x0,
y0}, {pos[60][[1]] Cos[\[Omega] 60] -
pos[60][[2]] Sin[\[Omega] 60],
pos[60][[1]] Sin[\[Omega] 60] +
pos[60][[2]] Cos[\[Omega] 60]}}]}, PlotRange -> 10],
{{\[Omega], 0.355}, 0, 1}, {{v0, 2.75}, 0, 5}, {{\[Theta]0, 2.15}, 0,
2 \[Pi]}, {{x0, -5.9}, -10, 10}, {{y0, -4.8}, -10, 10}, {t, 0, 60}]