Message Boards Message Boards

Writing a word with straight lines

Posted 6 years ago

Boris Ljubicic designed a computer drawing made of straight lines where the line density distribution formed the word MUSEUM for the International Museum Day 2006. enter image description here

Here I will show another way of making this kind of graphics using Wolfram Language. I was mainly motivated to explore the 3D versions of writing words with straight lines. The original discussion can be found here.

Code

Here is the code. Text, Graphics, and Rasterize are used to get the coordinates of the letters (instead of the Region functions.)

Clear[LetterAt];
Options[LetterAt] = {FontFamily -> "Times", FontWeight -> Bold, FontSize -> 120};
LetterAt[letter_String, opts : OptionsPattern[]] :=
  Block[{grm, grmr, mcoords, fontFamily, fontWeight, fontSize},
   fontFamily = OptionValue[FontFamily];
   fontWeight = OptionValue[FontWeight];
   fontSize = OptionValue[FontSize];
   grm = Graphics[
     Text[Style[letter, FontFamily -> fontFamily, 
       FontWeight -> fontWeight, FontSize -> fontSize], {0, 0}], 
     ImageSize -> {100, 100}];
   grmr = Rasterize[grm];
   mcoords = Reverse /@ Position[grmr[[1, 1]], {0, 0, 0}] // N
   ];

LetterCoordsToLines[coords_, offsetSize_Integer, nsample_Integer] := 
   Function[{pair}, 
   Line[({pair[[1]] - offsetSize*#1, 
        pair[[2]] + offsetSize*#1} & )[(pair[[2]] - pair[[1]])/
             Norm[pair[[2]] - pair[[1]]]]]] /@ 
  Table[RandomSample[coords, 2], {nsample}]

LetterCoordsToLines2[coords_, offsetSizeDummy_Integer, nsample_Integer] :=
 Map[Function[{pair}, 
   Line[{2 pair[[2]] - pair[[1]], 2 pair[[1]] - pair[[2]]}]], 
  Table[RandomSample[coords, 2], {nsample}]]

Getting coordinates for the letters

We get the coordinates for each letter separately and then translate it accordingly:

word = "MUSEUM";
letterCoords =
  MapThread[(
     t = LetterAt[#1, FontFamily -> "Helvetica", 
       FontWeight -> "Normal", FontSize -> 100];
     Map[Function[{p}, p + {#2, 0}], t]
     ) &, {Characters[word], 
    Range[0, (StringLength[word] - 1)*100, 100]}];

Here is how the points for each letter look like:

ListPlot /@ letterCoords[[1 ;; 4]]

enter image description here

Graphics[Point /@ letterCoords]

enter image description here

2D writings

We can write the letters by randomly selecting pairs of points for each letter. This command uses unit vectors derived for each pair:

palette = ColorData[97, "ColorList"];
Graphics[{Opacity[0.1], 
  Riffle[LetterCoordsToLines[#, 100, 700], RandomChoice@palette] & /@ 
   letterCoords}]

enter image description here

This command uses just the difference for each pair or points (as in Martin Buettner's answer):

Graphics[{Opacity[0.1], 
  Riffle[LetterCoordsToLines2[#, 100, 700], RandomChoice@palette] & /@
    letterCoords}]

enter image description here

And this command combines the two line drawing approaches together with random coloring:

Graphics[{Opacity[0.1], 
  Riffle[LetterCoordsToLines[#, 100, 200], 
     Table[RandomChoice@palette, {Length[#] - 1}]] & /@ letterCoords, 
  Riffle[LetterCoordsToLines2[#, 100, 400], 
     Table[RandomChoice@palette, {Length[#] - 1}]] & /@ letterCoords},
  PlotRange -> {{-50, 650}, {-50, 150}}]

enter image description here

3D writings

Let as make two flat point writings of each letter:

letterCoords3D = 
  Join[Map[Riffle[#, 0] &, #], Map[Riffle[#, 10] &, #]] & /@ 
   letterCoords;

and sample the points in the obtained pairs of letter panels:

Graphics3D[{Opacity[0.1], 
  LetterCoordsToLines2[#, 100, 600] & /@ letterCoords3D}, 
 ImageSize -> 1000, PlotRange -> {{-50, 650}, All, {-50, 150}}]

enter image description here

Here is another take with the two types of lines combined (the plot is thicker than the previous one because scaled normalized vectors are used):

Graphics3D[{Opacity[0.1], 
  LetterCoordsToLines[#, 100, 100] & /@ letterCoords3D, 
  LetterCoordsToLines2[#, 100, 500] & /@ letterCoords3D}, 
 ImageSize -> 1000, PlotRange -> {{-50, 650}, All, {-50, 150}}, 
 Boxed -> False]

enter image description here

Update : words in Cyrillic and Katakana

The line effect produces interesting results with more angular symbols.

enter image description here enter image description here enter image description here

POSTED BY: Anton Antonov
6 Replies

Dear Anton,

Thanks for the very interesting code. When I run the code, I get an error message in "Getting coordinates for the letters". Do you know why?

For your info: version MM 11.3

Clear[LetterAt];
Options[LetterAt] = {FontFamily -> "Times", FontWeight -> Bold, 
   FontSize -> 120};
LetterAt[letter_String, opts : OptionsPattern[]] := 
  Block[{grm, grmr, mcoords, fontFamily, fontWeight, fontSize}, 
   fontFamily = OptionValue[FontFamily];
   fontWeight = OptionValue[FontWeight];
   fontSize = OptionValue[FontSize];
   grm = Graphics[
     Text[Style[letter, FontFamily -> fontFamily, 
       FontWeight -> fontWeight, FontSize -> fontSize], {0, 0}], 
     ImageSize -> {100, 100}];
   grmr = Rasterize[grm];
   mcoords = Reverse /@ Position[grmr[[1, 1]], {0, 0, 0}] // N];

LetterCoordsToLines[coords_, offsetSize_Integer, nsample_Integer] := 
 Function[{pair}, 
   Line[({pair[[1]] - offsetSize*#1, 
        pair[[2]] + offsetSize*#1} &)[(pair[[2]] - pair[[1]])/
      Norm[pair[[2]] - pair[[1]]]]]] /@ 
  Table[RandomSample[coords, 2], {nsample}]

LetterCoordsToLines2[coords_, offsetSizeDummy_Integer, 
  nsample_Integer] := 
 Map[Function[{pair}, 
   Line[{2 pair[[2]] - pair[[1]], 2 pair[[1]] - pair[[2]]}]], 
  Table[RandomSample[coords, 2], {nsample}]]

word = "MUSEUM";
letterCoords = 
 MapThread[(t = 
     LetterAt[#1, FontFamily -> "Helvetica", FontWeight -> "Normal", 
      FontSize -> 100];
    Map[Function[{p}, p + {#2, 0}], t]) &, {Characters[word], 
   Range[0, (StringLength[word] - 1)*100, 100]}]

enter image description here

Thanks and look forward to your reply !

Regards,.....Jos

POSTED BY: Jos Klaps
Posted 6 years ago

Look at Kotaro Okazaki's reply above. A change is needed for version 11.3.

POSTED BY: Rohit Namjoshi

Dear Rohit,

Thanks for your quick response. Yes, I missed the changes in MM11.3.

Best Regards,.....Jos

POSTED BY: Jos Klaps

I am curious if this is similar to the algorithm used here: http://artof01.com/vrellis/works/knit.html

enter image description here

POSTED BY: Vitaliy Kaurov

Dear Anton,

Thank you for a great post. However it cannot work well in my Mathematica v11.3. So I changed it a bit. I changed Position[] to ImageValuePositions[].

LetterAt[letter_String, opts : OptionsPattern[]] := 
  Block[{grm, grmr, mcoords, fontFamily, fontWeight, fontSize}, 
   fontFamily = OptionValue[FontFamily];
   fontWeight = OptionValue[FontWeight];
   fontSize = OptionValue[FontSize];
   grm = Graphics[
     Text[Style[letter, FontFamily -> fontFamily, 
       FontWeight -> fontWeight, FontSize -> fontSize], {0, 0}], 
     ImageSize -> {100, 100}];
   grmr = Rasterize[grm];
   (* mcoords=Reverse/@Position[grmr[[1,1]],{0,0,0}]//N *)
   mcoords = ImageValuePositions[grmr, {0, 0, 0}] // N];

I enjoyed it in Hiragana. enter image description here enter image description here

POSTED BY: Kotaro Okazaki

enter image description here - Congratulations! This post is now a Staff Pick as distinguished by a badge on your profile! Thank you, keep it coming, and consider contributing your work to the The Notebook Archive!

POSTED BY: EDITORIAL BOARD
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract