Group Abstract Group Abstract

Message Boards Message Boards

Attempting to Construct a flat space with replacement rules

Posted 5 years ago
3 Replies

Are you aware of any initial conditions or rules for SetReplace that produces arbitrarily large patches of discretised R^2?

Are those defect free? (No Hyper edges or overlapping nodes)

How do you address the measurement issue problem on large enough graphs to exhaust our computation? Are there clever strategies to solve this issue?

Thank you for the interesting post. I rendered a video of your solution in 3d:

2d grid model example video

Just to examine the layout and the causality of the model.

Thank you again. Tuomas

POSTED BY: Tuomas Sorakivi

Heureka. The solution was discovered thanks to Malthe Andersen who had an inspired solution in this thread: https://community.wolfram.com/groups/-/m/t/1946413

enter image description here

However you still got the problem of long tails.

I found it nicer to pre generate a (partial) pattern using just r1 and then fill is seperatly.

enter image description here

The current rules:

enter image description here

enter image description here

My represenations are not chiral, so i ran into problems with red, which could be solved by understanding that the problem was created by chirality.

enter image description here

The dot always points away from the coordinate axis.

enter image description here

The code looks like that:

WolframModel[{
    {
     {5,6,9,8,5,6},
     {1,2},{2,1},{2,4},{4,2},{4,3},{3,4},{3,1},{1,3},
     {4,6},{6,4},{6,5},{5,6},{5,3},{3,5},
     {6,9},{9,6},{9,8},{8,9},{8,5},{5,8},
     {6,7},{7,6},{7,10},{10,7},{10,9},{9,10},
     {7,11},{11,7},{11,12},{12,11},{12,10},{10,12}
    } -> {
     {4,111,7,6,4,111,4},
     {7,111,4,6,7,111,7},
     {4,111,7,6,4,111},
     {1,2},{2,1},{2,4},{4,2},{4,3},{3,4},{3,1},{1,3},
     {4,6},{6,4},{6,5},{5,6},{5,3},{3,5},
     {6,9},{9,6},{9,8},{8,9},{8,5},{5,8},
     {6,7},{7,6},{7,10},{10,7},{10,9},{9,10},
     {7,11},{11,7},{11,12},{12,11},{12,10},{10,12},
     {4,111},{111,4},{111,7},{7,111}
    },
    {
     {6,7,10,9,6,7,6},
     {1,2},{2,1},{2,4},{4,2},{4,3},{3,4},{3,1},{1,3},
     {4,6},{6,4},{6,5},{5,6},{5,3},{3,5},
     {6,9},{9,6},{9,8},{8,9},{8,5},{5,8},
     {6,7},{7,6},{7,10},{10,7},{10,9},{9,10}
    } -> {
     {4,111,7,6,4,111,4},
     {1,2},{2,1},{2,4},{4,2},{4,3},{3,4},{3,1},{1,3},
     {4,6},{6,4},{6,5},{5,6},{5,3},{3,5},
     {6,9},{9,6},{9,8},{8,9},{8,5},{5,8},
     {6,7},{7,6},{7,10},{10,7},{10,9},{9,10},
     {4,111},{111,4},{111,7},{7,111}
    },
    {{1,2,3,4,1},{1,2},{2,1},{2,3},{3,2},{3,4},{4,3}}->
        {{11,12,2,1,11},{1,2},{2,1},{2,3},{3,2},{3,4},{4,3},{11,1},{1,11},{11,12},{12,11},{12,2},{2,12}}
},{
    {1,2,3,4,1},{2,3,4,1,2},{3,4,1,2,3},{4,1,2,3,4},
    {1,2,3,4,1,2},{2,3,4,1,2,3},{3,4,1,2,3,4},{4,1,2,3,4,1},
    {1,2},{2,1},{2,3},{3,2},{3,4},{4,3},{4,1},{1,4}
}
, 32, "FinalStatePlot"]

Thank You, Malthe Andersen,

after solving this toy problem, we can strive to attack bigger problems. The solution has more potential for optimization to run faster but now we can finaly say that we can build a 2d grid.

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard