Message Boards Message Boards

1
|
225167 Views
|
6 Replies
|
2 Total Likes
View groups...
Share
Share this post:

$\int_0^\infty e^{i \pi x} \left(1-(x+1)^{\frac{1}{x+1}}\right) dx$

$\int_0^\infty e^{i \pi x} \left(1-(x+1)^{\frac{1}{x+1}}\right) dx$ enter image description here enter image description here

enter image description here

f[x_] = E^(I*Pi*x)*(1 - (x + 1)^(1/(x + 1))); 
g[x_] = x^(1/x); u := t/(1 - t); 

sub = Im[NIntegrate[(f[(-I t)] - f[( I t)])/(Exp[2 Pi t] - 1), {t,
          0, Infinity}, WorkingPrecision -> 100]]

0.1170836031505383167089899122239912286901483986967757585888318959258587743002\
7817712246477316693025869

m = NSum[f[( t)] , {t, 0, Infinity}, WorkingPrecision -> 100, 
  Method -> "AlternatingSigns"]

0.1878596424620671202485179340542732300559030949001387861720046840894772315646\
6021370329665443217278

m - sub

0.0707760393115288035395280218302820013657546962033630275831727881636184572643\
8203658083188126524252

Is the same as 


{Re[NIntegrate[f[t], {t, 0, Infinity}]], and, 
 Re[NIntegrate[f[t], {t, 0, Infinity I}, WorkingPrecision -> 100]]}

NIntegrate::deodiv: DoubleExponentialOscillatory returns a finite integral estimate, but the integral might be divergent.

NIntegrate::deodiv: DoubleExponentialOscillatory returns a finite integral estimate, but the integral might be divergent.

{0.070776, and, \
0.0707760393115288035395280218302820013657546962033630275831727881636184572643\
8203658083188126617723821}

To be continued.

POSTED BY: Marvin Ray Burns
6 Replies

POSTED BY: Marvin Ray Burns

I won't bring the subject of numerical computation into this discussion, but I spent several years learning to compute the digits of $\int_0^\infty{e^{i \pi x} \left(1-(x+1)^{\frac{1}{x+1}}\right)}dx.$ You can read about my adventure at How to calculate the digits of the MKB constant. If you like numeric computations, of much interest is the story of how I came across this integral, by investigating $\sum _{x=0}^{\infty } e^{i \pi x} \left(1-(x+1)^{\frac{1}{x+1}}\right)$ since the 1990s, at Try to beat these MRB constant records!

POSTED BY: Marvin Ray Burns

POSTED BY: Marvin Ray Burns

POSTED BY: Marvin Ray Burns

MRB=$\sum _{x=0}^{\infty } e^{i \pi x} \left(1-(x+1)^{\frac{1}{x+1}}\right) $ vs M2= $\int_0^\infty e^{i \pi x} \left(1-(x+1)^{\frac{1}{x+1}}\right) dx$ in proper integrals

enter image description here

See this notebook. I got an interesting co-answer here.

enter image description here

POSTED BY: Marvin Ray Burns
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract