Message Boards Message Boards


How to speed up code with the new compiler?

Posted 6 months ago
5 Replies
10 Total Likes

enter image description here

Above is the painting by Parmigiano "Self-portrait in a Convex Mirror". Based upon my past contribution on reflection and anamorphism in spherical mirrors, I investigated if I could make a similar "painting"using Mathematica. Here is the geometrical setup:

enter image description here

C is the center of he mirror sphere, V is the view point and let S be a point to be reflected. The first problem is to find a point Q on the sphere such that the light ray VQ and the reflected ray QS form equal angles with the normal n on the sphere at Q. I wrote a function including an NSolvevalues stating the laws of reflection: V,C, S and Q in same plane and vector angles VQ to n and SQ to n must be equal:

findIntersection[ptS : {xs_, ys_, zs_}, xv_] := 
 Module[{ptC = {0, 0, 0}, plane, ptV = {xv, 0, 0}}, 
  plane = InfinitePlane[{ptC, ptV, ptS}]; 
    NSolveValues[{x, y, z} \[Element] Sphere[] && 
      VectorAngle[ptV - {x, y, z}, {x, y, z}] == 
       VectorAngle[ptS - {x, y, z}, {x, y, z}] && {x, y, 
        z} \[Element] plane && x > 0, {x, y, z}]]]

Works all right but the problem is the time it takes to find just one point Q. And I need a Q for every pixel in an image!

RepeatedTiming[findIntersection[{3.5, -4.5, -1.5}, 7.55]]

enter image description here

I know about the new compiler of the Wolfram Language but I am not familiar enough with it to write myself a CompiledFunction version of my function. The old Compile does not work properly for this and takes even longer:

findIntersectionCF = Compile[{{ptS, _Real, 1}, {xv, _Real}},
  First@NSolveValues[{x, y, z} \[Element] Sphere[] && 
     VectorAngle[ptV - {x, y, z}, {x, y, z}] == 
      VectorAngle[ptS - {x, y, z}, {x, y, z}] && {x, y, z} \[Element] 
      InfinitePlane[{{0., 0., 0.}, {xv, 0., 0.}, ptS}] && x > 0, {x, 
     y, z}], CompilationTarget -> "C"]

enter image description here

My question is : Can somebody at Wolfram or this community convert my function to the new CompiledFunction code and speed my function up?

POSTED BY: Erik Mahieu
5 Replies
Posted 6 months ago

I made an error in the formulation of my question. It should read: "Can somebody at Wolfram or this community convert my function to the new CompiledCodeFunction (instead of CompileFunction code)and speed my function up?" Sorry about that...

POSTED BY: Erik Mahieu

Not sure if the "new" compiler (FunctionCompile) can be of use here. The workhorse function (NSolveValues) is already a C level function in the Wolfram Language and thus as fast as can be.

POSTED BY: Arnoud Buzing

It is much faster to avoid region specifications and inequalities when feasible to do so. Not sure how much it mattered below but I just made the sphere and plane conditions into explicit algebraic equations.

Also removing transcendentals by taking inverse functions, removing radicals by squaring, clearing denominators all can improve speed. At the end you impose the removed conditions e.g. with Cases and/or Select. Actually I found it expedient to use both.

findIntersection[ptS : {xs_, ys_, zs_}, xv_] := Module[
  {ptC = {0, 0, 0}, ptV = {xv, 0, 0}, angV, angS, solns, x, y, z},
  angV = Simplify[Cos[VectorAngle[ptV - {x, y, z}, {x, y, z}]]^2, 
    Element[{x, y, z}, Reals]];
  angS = Simplify[Cos[VectorAngle[ptS - {x, y, z}, {x, y, z}]]^2, 
    Element[{x, y, z}, Reals]];
  solns = 
     NSolveValues[{x^2 + y^2 + z^2 == 1, 
       Numerator[Together[angV - angS]] == 0, zs*y - ys*z == 0}, {x, 
       y, z}], {x_Real, _Real, _Real} /; x > 0];
  SelectFirst[solns, (Abs[
       VectorAngle[ptV - #, #] - VectorAngle[ptS - #, #]] < 10^(-6)) &]

In[38]:= Timing[findIntersection[{3.5, -4.5, -1.5}, 7.55]]

(* Out[38]= {0.038289, {0.888266, -0.435758, -0.145253}} *)

Couple orders of magnitude.

POSTED BY: Daniel Lichtblau
Posted 6 months ago

Thank you Daniel, excellent and useful suggestions. There is something for me to learn in every step of your solution!

POSTED BY: Erik Mahieu
Posted 6 months ago

Thanks for your reply Arnaud. As suggested by Daniel, it appears better in some cases to rephrase the function than to Compile it.

POSTED BY: Erik Mahieu
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
or Discard

Group Abstract Group Abstract