Depending on the parameters, your equation has a variable number of solutions:
TP[x_] =
pr/x ((a (1 - b) (x^2))/(2 L) ((y g)/(1 + y g)))^(1/(1 -
b)) - ((c + 1) (Kr/x + Kp/(n x) +
Kf/(n x) + (hr + g)/
x (2 x (-((a (-1 + b) g x^2 y)/(L + g L y)))^(1/(1 -
b))) + (hp +
g)/(2 R x) ((a (1 - b) (x^2))/(2 L) ((y g)/(1 +
y g)))^(2/(1 - b)) + ((hp + g) (n -
1))/(2 x) ((a (1 - b) (x^2))/(2 L) ((y g)/(1 +
y g)))^(2/(1 -
b)) (x ((a (1 - b) (x^2))/(2 L) ((y g)/(1 +
y g)))^(1/(1 - b)) - 1/R) +
1/x^2 S + (v/x +
vp/(n x)) ((a (1 - b) (x^2))/(2 L) ((y g)/(1 +
y g)))^(1/(1 - b)) +
1/(n x)^2 Sv + (Pv w)/(x f ww) ((a (1 -
b) (x^2))/(2 L) ((y g)/(1 + y g)))^(1/(1 -
b)) + (((cf f) + (m bk))/(x f ww) (k n x +
k/q (Log[1 + z E^(-q n x)] -
Log[1 + z]))))) + (c ((pp/x +
pf/x) ((a (1 - b) (x^2))/(2 L) ((y g)/(1 +
y g)))^(1/(1 - b)))) + (pr/
x l (2 a g (x^2) y (((-((a (-1 + b) g x^2 y)/(L +
g L y)))^(1/(1 - b)))^b))/(L +
g L y) - ((a (1 - b) (x^2))/(2 L) ((y g)/(1 +
y g)))^(1/(1 - b)) (M - x)) // Simplify
(*Compute the first derivative*)
dTPdx = D[TP[x], x] // Simplify;
effe = Block[{a = 1, b = 2, bk = 1, c = 1, cf = 4, f = 1, g = 1,
hp = 1, hr = 1, k = 1, Kf = 1, Kp = 1, Kr = 1, l = 1, L = 1, m = 1,
M = 1, n = 1, pf = 1, pp = 1, pr = 1, Pv = 1, q = 1, R = 1, S = 1,
Sv = 1, v = 1, vp = 1, w = 1, ww = 1, y = 1, z = 1},
dTPdx]
Plot[effe, {x, -10, 10}, PlotRange -> {-1, 1}]
Solve[effe == 0, x, Reals]
gi = Block[{a = 1, b = 0, bk = 1, c = 1, cf = 4, f = 1, g = 1, hp = 1,
hr = 1, k = 1, Kf = 1, Kp = 1, Kr = 1, l = 1, L = 1, m = 1, M = 1,
n = 1, pf = 1, pp = 1, pr = 1, Pv = 1, q = 1, R = 1, S = 1,
Sv = 1, v = 1, vp = 1, w = 1, ww = 1, y = 1, z = 1},
dTPdx]
Plot[gi, {x, -10, 10}, PlotRange -> {-1, 1}]
Solve[gi == 0, x, Reals]
acca = Block[{a = 4, b = 2, bk = 1, c = 1, cf = 4, f = 3, g = 2,
hp = 1, hr = 1, k = 1, Kf = 2, Kp = 1, Kr = 5, l = 3, L = 1, m = 1,
M = 1, n = 1, pf = 4, pp = 1, pr = 1, Pv = 1, q = 1, R = 10,
S = 1, Sv = 1, v = 1, vp = 1, w = 1, ww = 1, y = 1, z = 2},
dTPdx]
Plot[acca, {x, -10, 10}]
Solve[acca == 0, x, Reals]
You cannot expect a simple analytical solution for the general case.