Group Abstract Group Abstract

Message Boards Message Boards

Find the function for a decision variable

Posted 1 year ago
Attachments:
POSTED BY: Shafa Hananta
2 Replies

Depending on the parameters, your equation has a variable number of solutions:

TP[x_] = 
 pr/x  ((a  (1 - b)  (x^2))/(2  L)  ((y  g)/(1 + y  g)))^(1/(1 - 
         b)) - ((c + 1)  (Kr/x + Kp/(n  x) + 
       Kf/(n  x) + (hr + g)/
         x  (2  x  (-((a  (-1 + b)  g  x^2  y)/(L + g  L  y)))^(1/(1 -
                b))) + (hp + 
           g)/(2  R  x)  ((a  (1 - b)  (x^2))/(2  L)  ((y  g)/(1 + 
               y  g)))^(2/(1 - b)) + ((hp + g)  (n - 
             1))/(2  x)  ((a  (1 - b)  (x^2))/(2  L)  ((y  g)/(1 + 
               y  g)))^(2/(1 - 
             b))  (x  ((a  (1 - b)  (x^2))/(2  L)  ((y  g)/(1 + 
                  y  g)))^(1/(1 - b)) - 1/R) + 
       1/x^2  S + (v/x + 
          vp/(n  x))  ((a  (1 - b)  (x^2))/(2  L)  ((y  g)/(1 + 
               y  g)))^(1/(1 - b)) + 
       1/(n  x)^2  Sv + (Pv  w)/(x  f  ww)  ((a  (1 - 
                b)  (x^2))/(2  L)  ((y  g)/(1 + y  g)))^(1/(1 - 
             b)) + (((cf  f) + (m  bk))/(x  f  ww)  (k  n  x + 
           k/q  (Log[1 + z  E^(-q  n  x)] - 
              Log[1 + z]))))) + (c  ((pp/x + 
         pf/x)  ((a  (1 - b)  (x^2))/(2  L)  ((y  g)/(1 + 
              y  g)))^(1/(1 - b)))) + (pr/
       x  l  (2  a  g  (x^2)  y  (((-((a  (-1 + b)  g  x^2  y)/(L + 
                   g  L  y)))^(1/(1 - b)))^b))/(L + 
         g  L  y) - ((a  (1 - b)  (x^2))/(2  L)  ((y  g)/(1 + 
             y  g)))^(1/(1 - b))  (M - x)) // Simplify
(*Compute the first derivative*)
dTPdx = D[TP[x], x] // Simplify;
effe = Block[{a = 1, b = 2, bk = 1, c = 1, cf = 4, f = 1, g = 1, 
   hp = 1, hr = 1, k = 1, Kf = 1, Kp = 1, Kr = 1, l = 1, L = 1, m = 1,
    M = 1, n = 1, pf = 1, pp = 1, pr = 1, Pv = 1, q = 1, R = 1, S = 1,
    Sv = 1, v = 1, vp = 1, w = 1, ww = 1, y = 1, z = 1},
  dTPdx]
Plot[effe, {x, -10, 10}, PlotRange -> {-1, 1}]
Solve[effe == 0, x, Reals]
gi = Block[{a = 1, b = 0, bk = 1, c = 1, cf = 4, f = 1, g = 1, hp = 1,
    hr = 1, k = 1, Kf = 1, Kp = 1, Kr = 1, l = 1, L = 1, m = 1, M = 1,
    n = 1, pf = 1, pp = 1, pr = 1, Pv = 1, q = 1, R = 1, S = 1, 
   Sv = 1, v = 1, vp = 1, w = 1, ww = 1, y = 1, z = 1},
  dTPdx]
Plot[gi, {x, -10, 10}, PlotRange -> {-1, 1}]
Solve[gi == 0, x, Reals]
acca = Block[{a = 4, b = 2, bk = 1, c = 1, cf = 4, f = 3, g = 2, 
   hp = 1, hr = 1, k = 1, Kf = 2, Kp = 1, Kr = 5, l = 3, L = 1, m = 1,
    M = 1, n = 1, pf = 4, pp = 1, pr = 1, Pv = 1, q = 1, R = 10, 
   S = 1, Sv = 1, v = 1, vp = 1, w = 1, ww = 1, y = 1, z = 2},
  dTPdx]
Plot[acca, {x, -10, 10}]
Solve[acca == 0, x, Reals]

You cannot expect a simple analytical solution for the general case.

POSTED BY: Gianluca Gorni

Given the state of today's mathematical knowledge, the only way is to calculate it numerically. Transcendental equation can't be solved analytically.

If Mathematics can't do then Mathematica either.

Regards M.I.

POSTED BY: Mariusz Iwaniuk
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard