Message Boards Message Boards

5
|
16489 Views
|
6 Replies
|
17 Total Likes
View groups...
Share
Share this post:
GROUPS:

Gallery of Nice Tweeted Examples

Posted 11 years ago

Seems like we could use a nice spot to post results we like, so I'll start with this one by Edmund Harriss (@Gelada):

enter image description here

http://t.co/hmj9Vr1DhY

POSTED BY: Andre Kuzniarek
6 Replies

Here is a really simple Guilloché Pattern tweeted by me. Tweak the code to generate amazing patterns:

PolarPlot[Evaluate[Flatten[{Table[(20+Sin[4 x+4.7])+((8+Sin[8x+1.8])-(20+Sin[4x+4.7]))(1+Sin[4x+n/Pi])/2,{n,0,19}]}]],{x,0,2Pi}]

PolarPlot

POSTED BY: Bernat Espigulé

TWEET by Heis Wernerberg ?@bohrificator

With[{L=400,z={x,y}},ContourPlot[Norm[z-First@#@z],
{x,-L,L},{y,-L,L}]]&[Nearest[Cases[=[wolfram curve image ],{_Real,_},{-2}]]]

enter image description here

POSTED BY: Vitaliy Kaurov

TWEET by Hazel Vizion ?@hazelvizion:

With[{w==[steve jobs curve image]},
Grid[Table[ w /. Line[l_] :> {Opacity[0.5],RandomColor[],Polygon[l]},{3},{3}]]]

enter image description here

POSTED BY: Vitaliy Kaurov

TWEET by Valtteri Raiko ?@vjraik

a=0;v={{0,0}};d[x_]:=(v=Append[v,v[[-1]]+{Cos[a],Sin[a]}];a+=x Pi/2);
d/@ Flatten[Nest[#/.(0->{0,0,1})&,0,11]];ListPlot[v]

enter image description here

POSTED BY: Vitaliy Kaurov

A TWEET by Andrej Bauer ?@andrejbauer

Graphics[Table[{PointSize[2^-n/4],Hue[n/50],
(Point[{Re@x,Im@x}]/.NSolve[#,x])&/@(x^Range[0,n].#&/@Tuples[{1,2},n+1])},{n,1,11}]]

enter image description here

POSTED BY: Vitaliy Kaurov
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract