Seems like we could use a nice spot to post results we like, so I'll start with this one by Edmund Harriss (@Gelada):
http://t.co/hmj9Vr1DhY
A few of my favorites:
https://twitter.com/woodylewis/status/512763729922887681 https://twitter.com/wolframtap/status/513086262702796800 https://twitter.com/wolframtap/status/513098198261710848 https://twitter.com/wolframtap/status/513103361613516800 https://twitter.com/wolframtap/status/513126085580836864
One:
A TWEET by Andrej Bauer ?@andrejbauer
Graphics[Table[{PointSize[2^-n/4],Hue[n/50], (Point[{Re@x,Im@x}]/.NSolve[#,x])&/@(x^Range[0,n].#&/@Tuples[{1,2},n+1])},{n,1,11}]]
TWEET by Valtteri Raiko ?@vjraik
a=0;v={{0,0}};d[x_]:=(v=Append[v,v[[-1]]+{Cos[a],Sin[a]}];a+=x Pi/2); d/@ Flatten[Nest[#/.(0->{0,0,1})&,0,11]];ListPlot[v]
Here is a really simple Guilloché Pattern tweeted by me. Tweak the code to generate amazing patterns:
PolarPlot[Evaluate[Flatten[{Table[(20+Sin[4 x+4.7])+((8+Sin[8x+1.8])-(20+Sin[4x+4.7]))(1+Sin[4x+n/Pi])/2,{n,0,19}]}]],{x,0,2Pi}]
TWEET by Hazel Vizion ?@hazelvizion:
With[{w==[steve jobs curve image]}, Grid[Table[ w /. Line[l_] :> {Opacity[0.5],RandomColor[],Polygon[l]},{3},{3}]]]
TWEET by Heis Wernerberg ?@bohrificator
With[{L=400,z={x,y}},ContourPlot[Norm[z-First@#@z], {x,-L,L},{y,-L,L}]]&[Nearest[Cases[=[wolfram curve image ],{_Real,_},{-2}]]]