0
|
4580 Views
|
3 Replies
|
0 Total Likes
View groups...
Share
GROUPS:

# Equations solving problem with NSolve

Posted 9 years ago
 Equations solving problem with NSolve
3 Replies
Sort By:
Posted 9 years ago
 Your two equations aren't linearly independent! Also you probably want to solve complex problem or you have 2 equations and 4 unknowns (re and im parts of b and c) In[189]:= eq1a = (-0.6715589548470183 + 0.7409511253549592 I)/(0.7409511253549592 + 0.6715589548470183 I - b) + (-0.6715589548470183 + 0.7409511253549592 I)/(0.7409511253549592 + 0.6715589548470183 I - c) Out[189]= -((0.671559 - 0.740951 I)/((0.740951 + 0.671559 I) - b)) - ( 0.671559 - 0.740951 I)/((0.740951 + 0.671559 I) - c) In[190]:= eq1b = Simplify[%*((0.7409511253549592 + 0.6715589548470183 I) - b)*((0.7409511253549592 + 0.6715589548470183 I) - c)] Out[190]= (-1.99037 + 0.196034 I) + (0.671559 - 0.740951 I) b + (0.671559 - 0.740951 I) c In[191]:= eq2a = (-0.20146768645410548 - 0.22228533760648775 I)/(0.22228533760648775 - 0.20146768645410548 I - b) + (-0.20146768645410548 - 0.22228533760648775 I)/(0.22228533760648775 - 0.20146768645410548 I - c) Out[191]= -((0.201468 + 0.222285 I)/((0.222285 - 0.201468 I) - b)) - ( 0.201468 + 0.222285 I)/((0.222285 - 0.201468 I) - c) In[192]:= eq2b = Simplify[%*((0.22228533760648775 - 0.20146768645410548 I) - b)*((0.22228533760648775 - 0.20146768645410548 I) - c)] Out[192]= (-0.179133 - 0.0176431 I) + (0.201468 + 0.222285 I) b + (0.201468 + 0.222285 I) c In[193]:= eq1c = Simplify[ComplexExpand[Im[eq1b], {b, c}]/0.7409511253549592] Out[193]= 0.264571 + 0.906347 Im[b] + 0.906347 Im[c] - 1. Re[b] - 1. Re[c] In[194]:= eq2c = Simplify[ComplexExpand[Im[eq2b], {b, c}]/0.22228533760648775] Out[194]= -0.0793713 + 0.906347 Im[b] + 0.906347 Im[c] + 1. Re[b] + 1. Re[c] 
Posted 9 years ago
 Equations solving problem with NSolve
Posted 9 years ago
 I was just showing that your 2 equations were not solvable