And if you need a 3D shape you can proceed also as follows:
Convert to cartesian using FromPolarCoordinates:
In[18]:= gear[\[Theta]_] := {1 +
1/8 Sin[18 (\[Theta] - \[Pi]/4)], \[Theta]}
FromPolarCoordinates[gear[\[Theta]]]
ParametricPlot[%, {\[Theta], 0, 2 \[Pi]}]
Out[19]= {Cos[\[Theta]] (1 + 1/8 Sin[18 (-(\[Pi]/4) + \[Theta])]),
Sin[\[Theta]] (1 + 1/8 Sin[18 (-(\[Pi]/4) + \[Theta])])}

Insert a 3rd dimension (eg in the y direction) and make a ParametricPlot3D:
In[30]:= Insert[FromPolarCoordinates[gear[\[Theta]]], y, 2]
ParametricPlot3D[%, {\[Theta], 0, 2 \[Pi]}, {y, 0, 1},
PlotPoints -> 25, PlotTheme -> "Marketing",
PerformanceGoal -> "Quality"]
Out[30]= {Cos[\[Theta]] (1 + 1/8 Sin[18 (-(\[Pi]/4) + \[Theta])]), y,
Sin[\[Theta]] (1 + 1/8 Sin[18 (-(\[Pi]/4) + \[Theta])])}
