Daniel,
Nothing wrong with being a physics undergrad. This is just citizen science, no authorities here.
I don't completely understand what you are saying, but there seem to be a few different ideas that might be fun for you to explore more concretely. Let me try rephrasing what I think you are saying. If one thinks of an atom classically, there are a bunch of electrons flying around. Instead of gravity attracting planets, the electrons repel each other, but it could be that when one goes to quantum atoms (physical ones) the math is the same and one could just as easily treat the planetary systems as quantum mechanical. The brightness signal as a sort of dimensional reduction.
One thing you can do is to run some simulations. For example, here is the 3 body simulation that I posted above run for longer.

It seems to be doing one thing for a while, then one planet goes on a big loop, during which the other two twist around like a well-behaved 2-body system, and then the third body comes back and it starts doing something different. You could interpret this as mixed states, where a pure state might be some identifiable behavior like nearly planar, nearly elliptical orbits.
To pursue the quantum mechanical analog you could quantify things like rotations, or to get fancy, spherical harmonic decompositions.