User Portlet
Featured Contributor
Discussions |
---|
Try: makeCommonDenominators /@ MyCoeffs ![enter image description here][1] [1]: http://community.wolfram.com//c/portal/getImageAttachment?filename=7657g.jpg&userId=159033 |
Thank you @Szabolcs and @Kevin for your valuable answers! |
What about applying the function **Table[]**: In[1]:= lista = {{a, b, c}, {d, e, f, g}, {n, o}}; listb = {{h, i, j}, {k, l, m}, {s, t, p, q}}; In[3]:= Flatten[ Table[{lista[[ii, jj]], listb[[ii, kk]]}, {ii, Length[lista]},... |
Thank you, Daniel! It is a very instructive and useful explanation! |
sinc[x_] := Piecewise[{{Sin[Pi x]/(Pi x), x != 0}, {1, x == 0}}] Plot[sinc[x], {x, -5, 5}, PlotRange -> All] ![enter image description here][1] [1]:... |
The character code is In[1]:= ToCharacterCode["`"] Out[1]= {96} So, you may enter it by pressing the key combination: **Alt+9+6**. |
You don't need the word "Solve", i.e. your input must be simply: (sqrt(x^2+x) - x) (sqrt(x^2+x) + x) and the result is [x][1]. [1]:... |
And one more additional curiosity: ContourPlot[x^2 == 1/10000, {x, -1, 1}, {y, -1, 1}, PlotRange -> {{.0022, .01}, {-.3, .3}}, PlotPoints -> 30] ContourPlot[10000 x^2 == 1, {x, -1, 1}, {y, -1, 1}, PlotRange -> {{.0022, .01}, {-.3, .3}},... |
One more variation on the same subject: z[t_, a_, b_] := {(a - b) Cos[t] + b Cos[(1 - a/b) t], (a - b) Sin[t] + b Sin[(1 - a/b) t]} ParametricPlot[ Evaluate[MapThread[ z[t, #1, #2] &, {Range[-(1/2), 9, 1/3], ... |
You must clear $f$. You can use also: Remove["Global`*"] After that you need to define all variables and function. |