Message Boards Message Boards

[GIF] Starry Night over Water

MODERATOR NOTE: a submission to computations art contest, see more: https://wolfr.am/CompArt-22.
The complete notebook of this post is attached at the end.


starry<em>nightover_water

This cute little animation came to me while I was playing with Dynamic. I found it very lovely so would like to share it to the community.

So I wanted to know how many Dynamic primitives my 5 years old laptop can handle in one scene (i.e. Graphics). This is my first test scenario:

With[{num = 40, aspRatio = 3, splineOrder = 10},
    With[{freqSet = Rescale @ Range @ num},
        DynamicModule[
            {
                y = 0,
                pts = Thread[
                    {
                        Rescale[Range @ num, {1, num}, aspRatio * {-1, 1}],
                        0
                    }
                ]
            },
            DynamicWrapper[
                Graphics[
                    {
                        {
                            CapForm @ "Round",
                            Hue[0.58, 0.45, 0.55],
                            AbsoluteThickness @ 5,
                            BSplineCurve[
                                Dynamic @ pts, SplineDegree -> splineOrder, SplineKnots -> "Unclamped"
                            ]
                        },
                        {
                            CapForm @ "Round", JoinForm @ "Round", GrayLevel @ 0.7, AbsoluteThickness @ 3,
                            Line @ Dynamic @ pts
                        },
                        {
                            Hue[0.1, 0.5, 0.95, 0.7],
                            AbsolutePointSize @ 20,
                            Point @ Dynamic @ pts
                        }
                    },
                    PlotRange -> {aspRatio * {-1, 1}, {-1.2, 1.2}},
                    PlotRangePadding -> Scaled[0.05],
                    ImageSize -> 600
                ],
                y = Clock[{0, Infinity, 1 / 60}];
                pts = MapIndexed[
                    Function[
                        {freq, idx},
                        {
                            Rescale[idx[[1]], {1, num}, aspRatio * {-1, 1}],
                            Sin[2 * Pi * freq * y]
                        }
                    ],
                    freqSet
                ]
            ]
        ]
    ]
]

helix

Not too shabby! The motions are smooth, the points align perfectly.

Now this one I call Everlasting Tide:

With[
    {
        winding = 8, corners = 6, radius = 1, shift = 2, gravityPower = 10, freqPower = 1 / 3, symmetricDir = Pi / 2
    },
    With[{num = (corners * winding) + 1},
        With[
            {
                ω = Function[Rescale[#, {0, 1}, {0.2, 1}]][
                    Function[
                        x,
                        Plus[
                            1, -(TriangleWave[{0, 2}, (x - 1) * x] ^ (1 / freqPower))
                        ]
                    ][Rescale @ Range @ num]
                ]
            },
            DynamicModule[
                {
                    t = 0,
                    pts = Function[
                        Function[
                            {θ, d},
                            (radius + d) * {Cos[θ], Sin @ θ}
                        ]@@@#
                    ][
                        Thread[
                            {
                                Rescale[
                                    Range @ num,
                                    {1, num},
                                    {0, winding * 2 * Pi} + symmetricDir
                                ],
                                0
                            }
                        ]
                    ]
                },
                DynamicWrapper[
                    Graphics[
                        {
                            {
                                Hue[0.1, 0.2, 0.9],
                                AbsoluteThickness @ 1,
                                Map[
                                    Circle[{0, 0}, #]&,
                                    Rescale[
                                        Rescale[Range[100]] ^ gravityPower,
                                        {0, 1},
                                        {Max[0, radius + -shift], radius + shift}
                                    ]
                                ]
                            },
                            {GrayLevel @ 0.85, Line @ Dynamic @ pts},
                            {
                                Hue[0, 0.55, 0.85, 0.3],
                                AbsolutePointSize @ 10,
                                Point @ Dynamic @ Most @ pts
                            },
                            {
                                GrayLevel[0.7, 0.4],
                                EdgeForm @ {Black, AbsoluteThickness @ 1},
                                FilledCurve[BSplineCurve[Dynamic @ Most @ pts, SplineClosed -> True]]
                            }
                        },
                        PlotRange -> ((radius + shift) * {{-1, 1}, {-1, 1}}),
                        PlotRangePadding -> Scaled[0.05],
                        Axes -> False, ImageSize -> 500
                    ],
                    t = Clock[{0, Infinity, 1 / 60}];
                    pts = Function[
                        Function[
                            {θ, d},
                            (radius + d) * {Cos[θ], Sin @ θ}
                        ]@@@#
                    ][
                        MapIndexed[
                            Function[
                                {ω, idx},
                                {
                                    Rescale[
                                        idx[[1]],
                                        {1, num},
                                        {0, winding * 2 * Pi} + symmetricDir
                                    ],
                                    Times[
                                        shift,
                                        Subtract[
                                            2 * ((Sin[ω * t] + 1) / 2) ^ gravityPower,
                                            1
                                        ]
                                    ]
                                }
                            ],
                            ω
                        ]
                    ]
                ]
            ]
        ]
    ]
]

everlasting_tide

But back to my most beloved animation at the beginning. I introduce to you: Starry Night over Water. A winter night is painted by the palette of the cosmos. Each star whirls in its own delight, unknowingly lighting the quiet water below in a blurry expansion of everchanging hues. I'm really thrilled how such a lovely piece of animation can be created with a little more than 2000 character in code, and the background optimization done by Mathematica to make it run so smoothly.

P.S. I have used explicit iteration here instead of Clock to drive the animation, so that this small quiet world shall be immune from a certain overflow ;)

Things to try:

Playing with the parameters of the outmost With, say, changing baseColorFunc to ColorData["SunsetColors"], or changing aspRatio to match your monitor then menu-bar > Window > FullScreen.

With[
    {
        (* time step of the animation: *) Δt            = 0.05, 
        (* number of stars:            *) n             = 50, 
        (* maximal size of stars:      *) radius        = 1.5, 
        (* color theme:                *) baseColorFunc = ColorData @ "StarryNightColors",
        (* geometric properties of the water region: *)
        waterBase = -2, waterWidth = 5, 
        (* geometric properties of the final drawing: *)
        height = 20, imageHeight = 700, aspRatio = 1 / GoldenRatio
    },
    With[{width = (height + (-waterBase) + waterWidth) / aspRatio},
        Apply[
            Function[{θ0, ω, expr},
                DynamicModule[{θ = θ0},
                    DynamicWrapper[
                        Deploy @ Activate @ expr,
                        θ = Mod[θ + ω * Δt, 2 * Pi]
                    ]
                ]
            ]
        ][
            Module[{cx, cy, Δx, Δy, color},
                {
                    RandomReal[{0, Pi / 2}, n],
                    RandomReal[{0.3, 1}, n],
                    Inactive[Graphics][
                        {
                            (* background: *)
                            Module[
                                {
                                    h = height + (-waterBase) + waterWidth + 10,
                                    w = width + 5,
                                    m = 10, Δh, cf = baseColorFunc /* (Darker[#, 0.5]&)
                                },
                                Δh = h / m;
                                MapThread[
                                    Function[
                                        {y, c1, c2},
                                        {
                                            EdgeForm[],
                                            Polygon[
                                                {
                                                    {-5, y},
                                                    {w, y},
                                                    {w, y + Δh},
                                                    {-5, y + Δh}
                                                },
                                                VertexColors -> Map[cf, {c1, c1, c2, c2}]
                                            ]
                                        }
                                    ],
                                    {
                                        Function[
                                            Rescale[
                                                #,
                                                {1, m},
                                                {(waterBase + -waterWidth) - 5, height + 5 + -Δh}
                                            ]
                                        ][Range @ m],
                                        Most[
                                            Function[0.4 * (1 + -#) ^ 5][Rescale[Range[m + 1]]]
                                        ],
                                        Rest[
                                            Function[0.4 * (1 + -#) ^ 5][Rescale[Range[m + 1]]]
                                        ]
                                    }
                                ]
                            ],
                            (* foreground: *)
                            MapThread[
                                Function[
                                    {cpos, r, idx, shineShift},
                                    {cx, cy} = cpos;
                                    {Δx, Δy} = cpos + -({width, height} / 2);
                                    (* base color: *)
                                    color = baseColorFunc[
                                        1 + -Norm[{Δx, Δy} / {width, height}, 1]
                                    ];
                                    {
                                        (* one star: *)
                                        {
                                            FaceForm @ {Append[(* transparency: *) 0.7][color]},
                                            EdgeForm[],
                                            Polygon[
                                                Map[
                                                    Function[cpos + r * #],
                                                    {
                                                        {0, 1},
                                                        {Cos[Dynamic[θ[[idx]]]], 0},
                                                        {0, -1},
                                                        {-Cos[Dynamic[θ[[idx]]]], 0}
                                                    }
                                                ]
                                            ]
                                        },
                                        (* and its reflection: *)
                                        {
                                            RightComposition[
                                                ColorConvert[#, "LAB"]&,
                                                (* adjust luminance according to shineShift (i.e. y-coords): *)
                                                ReplacePart[
                                                    1 -> RightComposition[
                                                        Function[Cos[2 * #]],
                                                        Function[((# + 1) / 2) ^ 0.5],
                                                        Function[
                                                            Rescale[
                                                                #,
                                                                {0, 1},
                                                                Plus[
                                                                    (* mean luminance, lower the brighter: *)
                                                                    Rescale[shineShift, {-1, 1}, {0.4, 0.7}],
                                                                    (* luminance variation range, lower the more active: *)
                                                                    {-1, 1} * Rescale[shineShift, {-1, 1}, {0.3, 0.03}]
                                                                ]
                                                            ]
                                                        ]
                                                    ][Dynamic[θ[[idx]]]]
                                                ],
                                                (* transparency: *)
                                                Append[Function[Rescale[#, {-1, 1}, {0.2, 0.6}]][shineShift]]
                                            ][color],
                                            (* abstract blur: *)
                                            AbsoluteThickness[Function[Rescale[#, {-1, 1}, {10, 1}]][shineShift]],
                                            Line[
                                                Function[
                                                    {
                                                        {
                                                            Plus[
                                                                cx, -(Times[
                                                                    r,
                                                                    Times[
                                                                        #3,
                                                                        Times[
                                                                            1 / 2,
                                                                            1 + -(#2 * Cos[Dynamic[θ[[idx]]]])
                                                                        ]
                                                                    ]
                                                                ])
                                                            ],
                                                            #
                                                        },
                                                        {
                                                            Plus[
                                                                cx,
                                                                Times[
                                                                    r,
                                                                    Times[
                                                                        #3,
                                                                        (1 / 2) * (1 + #2 * Sin[Dynamic[θ[[idx]]]])
                                                                    ]
                                                                ]
                                                            ],
                                                            #
                                                        }
                                                    }
                                                ][
                                                    (* y-coords: *)
                                                    Plus[
                                                        waterBase,
                                                        waterWidth * ((Rescale[shineShift, {-1, 1}] ^ 0.5) - 1)
                                                    ],
                                                    (* variance: *)
                                                    Rescale[shineShift, {-1, 1}, {1, 0.2}],
                                                    (* mean radius: *)
                                                    Rescale[shineShift, {-1, 1}, {2, 4}]
                                                ]
                                            ]
                                        }
                                    }
                                ],
                                {
                                    Join[
                                        ScalingTransform[{3 / 4, 3 / 4}, {width, height} / 2][
                                            RandomPoint[Rectangle[{0, 0}, {width, height}], Ceiling[n / 4]]
                                        ],
                                        RandomPoint[
                                            Rectangle[{0, 0}, {width, height}],
                                            (n + -Ceiling[n / 4]) - 1
                                        ],
                                        {{width, height} / 2}
                                    ],
                                    radius * RandomReal[{1 / height, 1}, n],
                                    Range @ n,
                                    RandomReal[{-1, 1}, n]
                                }
                            ]
                        },
                        PlotRange -> {{0, width}, {waterBase + -waterWidth, height}},
                        PlotRangePadding -> {{2, 2}, {1, 2}},
                        Background -> None,
                        ImageSize -> {Automatic, imageHeight}
                    ]
                }
            ]
        ]
    ]
]

starry<em>nightover_water

Attachments:
POSTED BY: Silvia Hao
7 Replies

How can this Deployed dynamic be converted into images frames?

The exported movie would be great as Zoom background (this month.)

POSTED BY: Anton Antonov

Great idea there!

So to create a GIF, I think it would be convenient to introduce the total number of frames:

With[{frames = 120}
 , With[{
   (* time step of the animation: *) Δt = 1/frames
   (* ...... *)

To ensure the GIF is periodical, ω should be constrained, so:

(* ...... *)
Module[{cx, cy, Δx, Δy, color},
    {
        (* θ0: *) RandomReal[{0, Pi / 2}, n],
        (* ω: *)(* instead of RandomReal[{0.3, 1}, n]: *)
        2 Pi RandomInteger[{1, 5}, n] ,
(* ...... *)

Finally, instead of:

Function[{θ0, ω, expr},
                DynamicModule[{θ = θ0},
                    DynamicWrapper[
                        Deploy @ Activate @ expr,
                        θ = Mod[θ + ω * Δt, 2 * Pi]
                    ]]]

a static generator is needed:

Function[{θ0, ω, expr},
   Block[{θ = θ0 + k ω Δt, 
     Dynamic = Identity},
    expr // Deploy // Inactive[Function][k, #] & // Activate
    ]
]

So assemble them together:

frameGen = With[{frames = 120},#]& @ With[
    {
        (* time step of the animation: *) Δt            = 1./frames, 
        (* number of stars:            *) n             = 50, 
        (* maximal size of stars:      *) radius        = 1.5, 
        (* color theme:                *) baseColorFunc = ColorData @ "StarryNightColors",
        (* geometric properties of the water region: *)
        waterBase = -2, waterWidth = 5, 
        (* geometric properties of the final drawing: *)
        height = 20, imageHeight = 700, aspRatio = 1 / GoldenRatio
    },
    With[{width = (height + (-waterBase) + waterWidth) / aspRatio},
        Apply[
            Function[{θ0, ω, expr},
                (* DynamicModule[{θ = θ0},DynamicWrapper[Deploy @ Activate @ expr,θ = Mod[θ + ω * Δt, 2 * Pi]]]] *)
                Block[{θ = θ0 + k ω Δt, Dynamic = Identity},
                   expr // Deploy // Inactive[Function][k, #] & // Activate
                ]
            ]
        ][
            Module[{cx, cy, Δx, Δy, color},
                {
                    RandomReal[{0, Pi / 2}, n],
                    RandomReal[{0.3, 1}, n],
                    Inactive[Graphics][
                        {
                            (* background: *)
                            Module[
                                {
                                    h = height + (-waterBase) + waterWidth + 10,
                                    w = width + 5,
                                    m = 10, Δh, cf = baseColorFunc /* (Darker[#, 0.5]&)
                                },
                                Δh = h / m;
                                MapThread[
                                    Function[{y, c1, c2}, {EdgeForm[], Polygon[{{-5, y},{w, y},{w, y + Δh},{-5, y + Δh}},VertexColors -> Map[cf, {c1, c1, c2, c2}]]}],
                                    {
                                        Function[
                                            Rescale[#, {1, m}, {(waterBase + -waterWidth) - 5, height + 5 + -Δh}]
                                        ][Range @ m],
                                        Most[Function[0.4 * (1 + -#) ^ 5][Rescale[Range[m + 1]]]],
                                        Rest[Function[0.4 * (1 + -#) ^ 5][Rescale[Range[m + 1]]]]
                                    }
                                ]
                            ],
                            (* foreground: *)
                            MapThread[
                                Function[
                                    {cpos, r, idx, shineShift},
                                    {cx, cy} = cpos;
                                    {Δx, Δy} = cpos + -({width, height} / 2);
                                    (* base color: *)
                                    color = baseColorFunc[
                                        1 + -Norm[{Δx, Δy} / {width, height}, 1]
                                    ];
                                    {
                                        (* one star: *)
                                        {
                                            FaceForm @ {Append[(* transparency: *) 0.7][color]},
                                            EdgeForm[],
                                            Polygon[Map[Function[cpos + r * #],{{0, 1},{Cos[Dynamic[θ[[idx]]]], 0},{0, -1},{-Cos[Dynamic[θ[[idx]]]], 0}}]]
                                        },
                                        (* and its reflection: *)
                                        {
                                            RightComposition[
                                                ColorConvert[#, "LAB"]&,
                                                (* adjust luminance according to shineShift (i.e. y-coords): *)
                                                ReplacePart[
                                                    1 -> RightComposition[
                                                        Function[Cos[2 * #]],
                                                        Function[((# + 1) / 2) ^ 0.5],
                                                        Function[
                                                            Rescale[#, {0, 1},
                                                                Plus[
                                                                    (* mean luminance, lower the brighter: *)
                                                                    Rescale[shineShift, {-1, 1}, {0.4, 0.7}],
                                                                    (* luminance variation range, lower the more active: *)
                                                                    {-1, 1} * Rescale[shineShift, {-1, 1}, {0.3, 0.03}]
                                                                ]]
                                                        ]
                                                    ][Dynamic[θ[[idx]]]]
                                                ],
                                                (* transparency: *)
                                                Append[Function[Rescale[#, {-1, 1}, {0.2, 0.6}]][shineShift]]
                                            ][color],
                                            (* abstract blur: *)
                                            AbsoluteThickness[Function[Rescale[#, {-1, 1}, {10, 1}]][shineShift]],
                                            Line[
                                                Function[
                                                    {
                                                        {cx - 1/2 r (#3 (1 - #2 Cos[Dynamic[θ[[idx]]]])), #1},
                                                        {cx + 1/2 r (#3 (1 + #2 Sin[Dynamic[θ[[idx]]]])), #1}
                                                    }
                                                ][
                                                    (* y-coords: *)
                                                    Plus[
                                                        waterBase,
                                                        waterWidth * ((Rescale[shineShift, {-1, 1}] ^ 0.5) - 1)
                                                    ],
                                                    (* variance: *)
                                                    Rescale[shineShift, {-1, 1}, {1, 0.2}],
                                                    (* mean radius: *)
                                                    Rescale[shineShift, {-1, 1}, {2, 4}]
                                                ]]}}],
                                {
                                    Join[
                                        ScalingTransform[{3 / 4, 3 / 4}, {width, height} / 2][
                                            RandomPoint[Rectangle[{0, 0}, {width, height}], Ceiling[n / 4]]
                                        ],
                                        RandomPoint[Rectangle[{0, 0}, {width, height}], (n + -Ceiling[n / 4]) - 1],
                                        {{width, height} / 2}
                                    ],
                                    radius * RandomReal[{1 / height, 1}, n],
                                    Range @ n,
                                    RandomReal[{-1, 1}, n]
                                }
                            ]},
                        PlotRange -> {{0, width}, {waterBase + -waterWidth, height}},
                        PlotRangePadding -> {{2, 2}, {1, 2}},
                        Background -> None,
                        ImageSize -> {Automatic, imageHeight}
                    ]}]]]];

Generating frames:

frames = With[{frames = 120}, RightComposition[frameGen, Rasterize] /@ Range[frames]];

Exporting to GIF:

Export["starry_night_over_water.gif", frames, "GIF",  "DisplayDurations" -> .1]
POSTED BY: Silvia Hao

Great post, and thanks for providing the notebook for download.

enter image description here - Congratulations! This post is now a Staff Pick as distinguished by a badge on your profile! Thank you, keep it coming, and consider contributing your work to the The Notebook Archive!

POSTED BY: EDITORIAL BOARD
Posted 6 years ago

Lovely post!

POSTED BY: Casper YC

Beautiful and calming! Saving for my attempts at meditation. And it's great to see such clear, logical beautifully-formatted code.

Works great -- Thanks!

POSTED BY: Anton Antonov
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract