In the Ruliad, @Chase Marangu, Wolfram Ambassador! Force = Gradient Field of Potential Energy.
v[x_, y_, z_] :=
Sum[1/Sqrt[(x - 10*Cos[i*105])^2 + (y - 10*Cos[i*39])^2 + (z -
10*Tan[i*22.1211])^2], {i, 1, 5}]
e[x_, y_, z_] :=
Evaluate[(-1)*Grad[v[a, b, c], {a, b, c}] /. a -> x /. b -> y /.
c -> z]
plotSize = 10;
potentialColorFunction = Function[
{x, y, z},
RGBColor[0, 0.5 + 0.5*Sin[v[x, y, z]*30], 1]];
potentialPlot = ContourPlot3D[
Evaluate[v[x, y, z]],
{x, -plotSize, plotSize},
{y, -plotSize, plotSize},
{z, -plotSize, plotSize},
Mesh -> None,
ContourStyle -> Directive[
RGBColor[0.1, 1, 1],
Opacity@0.4,
Specularity[White, 20]
],
Contours -> 10
];
fieldPlot = StreamPlot3D[
Evaluate[e[x, y, z]],
{x, -plotSize, plotSize},
{y, -plotSize, plotSize},
{z, -plotSize, plotSize},
StreamStyle -> "Line",
StreamPoints -> Fine,
StreamScale -> Full,
PlotRange -> {{-plotSize, plotSize}, {-plotSize,
plotSize}, {-plotSize, plotSize}},
BoxRatios -> {1, 1, 1},
Boxed -> False,
Axes -> None,
Lighting -> "Neutral"
];
Show[fieldPlot, potentialPlot, ImageSize -> Large, PlotRange -> All,
Boxed -> False]
Oh that's a nice field this is the best thing that my eyes have ever seen. The demo of how to use the three builtin functions and I do sometimes, I find it useful.
When you go down to the foundations of things, drill down to the foundation in these scorched sands that's why it's so nice to see your post now. Before I get back to my day job you know what you want to do. Thanks for this you have made me feel wonderful.