User Portlet
Featured Contributor
Discussions |
---|
Without loss of generality, we can work with 2-dimensional matrices. The Abelian group of order 3 has these elements: ``` In[429]:= A3 = {IdentityMatrix[2], RotationMatrix[2 \[Pi]/3], RotationMatrix[4 \[Pi]/3]} Out[429]= {{{1, 0}, {0,... |
It's amazing where our thoughts come from. As from out of the blue while reading a book about a beech wood in England I realized that both myself and Danny overlooked that fact that the space groups are infinite groups. And because they are infinite,... |
Clustering relies on a single measure of "distance" between objects, so it's just a matter of devising a reasonable way combining several distances (one for image data, one for physical measurements, one for pollinators, ...) into one. It is... |
Because the package file is autogenerated from the notebook, every time the notebook is saved, the package file gets rewritten. Therefore one should _never_ edit the package file. Regarding conversion of a code file (script or package) into a... |
The endemic equilibria can be found with `Solve`, the way you have been trying. I may just take a long time to get a fully symbolic solution. Unless you want to prove that an endemic equilibrium is unstable when R0 |
PS. the PlotStyle option should be u2[x_] := 0.5 Log[x] + 0.8 Log[6] Plot[{u2[x], u1[x]}, {x, 0, 10}, PlotStyle -> {{Blue, Thickness[0.01]}, {Red, Thickness[0.01]}}] |
use StringReplace[string, ")" ~~ Shortest[__] ~~ ":" -> "):"] Normal expression patterns take the shortest pattern by default, while string patterns take the longest. Note, I added the ":" to the rhs of the replacement rule. ... |
Hi, Dorothy! Yes, it will have to be aGEDCOM format file for the data to be accessible to the functions in the package. It could be a lot of work to create that file by hand because there should be cross-referencing between individuals and... |
To run the notebook for this post in version 12.0 of Mathematica make the following changes: 1) Replace the first input |
The Manipulate function will allow you to easily attach sliders to parameters and dynamically update the plot as the sliders are moved. All the Wolfram Language documentation is available on-line. the landing page is [here][1]. Documentation for... |